منابع مشابه
Lossless Online Bayesian Bagging
Bagging frequently improves the predictive performance of a model. An online version has recently been introduced, which attempts to gain the benefits of an online algorithm while approximating regular bagging. However, regular online bagging is an approximation to its batch counterpart and so is not lossless with respect to the bagging operation. By operating under the Bayesian paradigm, we in...
متن کاملA Bayesian Approach for Online Classifier Ensemble
We propose a Bayesian approach for recursively estimating the classifier weights in online learning of a classifier ensemble. In contrast with past methods, such as stochastic gradient descent or online boosting, our approach estimates the weights by recursively updating its posterior distribution. For a specified class of loss functions, we show that it is possible to formulate a suitably defi...
متن کاملA Bayesian Framework for Online Classifier Ensemble
We propose a Bayesian framework for recursively estimating the classifier weights in online learning of a classifier ensemble. In contrast with past methods, such as stochastic gradient descent or online boosting, our framework estimates the weights in terms of evolving posterior distributions. For a specified class of loss functions, we show that it is possible to formulate a suitably defined ...
متن کاملConcept Drift Detection Using Online Bayesian Classifier
In data classification the goal is to predict the category of novel instances based on a collection of exemplars whose respective categories are known a priori. The state-of-theart includes various algorithms to solve this problem, including Naive Bayes, Random Forest, Support Vector Machines (SVM), among others. Most of these classifiers consider that the statistical data distribution remains ...
متن کاملLossless Decomposition of Bayesian Networks
In this paper, we study the problem of information preservation when decomposing a single Bayesian network into a set of smaller Bayesian networks. We present a method that losslessly decomposes a Bayesian network so that no conditional independency information is lost and no extraneous conditional independency information is introduced during the decomposition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2019
ISSN: 0020-0255
DOI: 10.1016/j.ins.2019.03.031